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Abstract: This paper develops a new generalized-branching technique called “explicit-
constraint branching” (ECB) to improve the performance of branch-and-
bound algorithms for solving mixed-integer programs (MIPs). ECB adds 
structure to a MIP, in the form of auxiliary constraints and auxiliary integer 
variables, to allow branching on groups of (original) integer variables that 
would not otherwise be possible. Computational tests on three sets of real-
world MIPs demonstrate that ECB often improves solution times over 
standard branch and bound, sometimes dramatically. 

1. INTRODUCTION  

This paper develops a simple new technique called “explicit-constraint 
branching” (ECB) to improve the performance of branch-and-bound 
algorithms for solving certain mixed-integer programs (MIPs). The 
technique can be classified as a type of “generalized branching” (e.g., Sol 
1994, Jörnsten and Larsson 1988) or “constraint branching” (Foster and 
Ryan 1981). It is neither a specialization nor generalization of the 
branching techniques based on “special ordered sets” (Beale and Tomlin 
1970). We believe that ECB is a tool that should be in every integer 
programmer’s toolkit. 

Standard variable-based branch and bound solves the linear-
programming (LP) relaxation of a MIP and partitions the MIP’s feasible 
region by branching on individual integer variables. As an example, 
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suppose we are solving a MIP for solution vector (x*, v*) where x and v 
represent integer and continuous variables, respectively. We have just 

obtained a solution x v* *,� �  to the MIP’s LP relaxation, and some variable 

$x j  is fractional, i.e., m < $x j  < m + 1 for some integer m. The standard 

branching (partitioning) choices are  

xj ≤ m  or  xj ≥ m + 1.  (1) 

Branching on individual variables is attractive since its implementation 
is quite simple within the bounded-variable simplex algorithm that is 
normally embedded in a MIP solver. Empirically, however, this type of 
branching can create an unbalanced enumeration tree, which can lead to 
excessive enumeration (Foster and Ryan 1981). We propose another 
branching technique that has the potential to yield significant computational 
improvements for some MIPs.  

Suppose that we are solving a generic MIP with integer variables xj ≥ 0 
for j ∈  J. Let J′  ⊆  J be an arbitrary, nonempty subset of J and define integer 

coefficients α j for each xj, j ∈  J′. Then, Σj∈ J′α jxj must be integer in any 
solution to the MIP, and a valid partition of the MIP’s feasible region is 
derived from  

α αj j

j J

j j

j J

x m x m
∈ ′ ∈ ′
∑ ∑≤ ≥ +  or  1 ,  (2) 

for any integer m. We call this partitioning scheme “constraint branching” 
although, strictly speaking, it is a generalization of constraint branching as 
defined by Foster and Ryan (1981). 

Previous applications of constraint branching, to problems with special 
structure, have proven to be highly effective. Such applications, with one 
exception to be mentioned later, do not require that explicit constraints of 
the form (2) be added. Examples include the special ordered sets (SOS) of 
Beale and Tomlin (1970) and the techniques of Foster and Ryan (1981). In 
a simplified fashion, we illustrate the constraint branching of Foster and 
Ryan on the set-partitioning problem:  
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where Ji ⊂  J for all i. 
Suppose we are at the initial node of the branch-and-bound tree, have 

just solved the LP relaxation of SPP for $x , and $x j  is fractional for some j. 

Select subset index f such that j ∈  Jf  (there are at least two fractional 

variables in Jf), and partition Jf into two disjoint subsets, J f
1  and J f

2 , each 

containing one or more fractional variables. Then, a valid partition of the 
SPP’s feasible region is  

x xj

j J

j

j Jf f∈ ∈
∑ ∑≤ ≥

1 1

0 1  or  .  (4) 

Those restrictions are equivalent to  

x xj

j J

j

j Jf f∈ ∈
∑ ∑≤ ≤

1 2

0 0  or  ,  (5) 

because Σj∈ Jf xj = 1. Clearly, we can perform this type of branching 
recursively on the subsets, and explicit constraints of the form (4) or (5) are 

not needed: Simply fix variables in J f
1  or J f

2  to 0. We refer to this special 

case of constraint branching as “implicit-constraint branching” since it can 
be accomplished without adding explicit constraints like (4).  

Implicit-constraint branching has been shown to be computationally 
effective through the technique just described (Foster and Ryan 1981) and 
through the techniques of special ordered sets (e.g., Hummeltenberg 1984, 
Escudero 1988). In fact, the “SOS-Type-3” (S3) constraint-branching of 
Escudero (1987, 1988), which is based on SOS Type 1 (S1) as defined by 
Beale and Tomlin (1970), is quite similar to our set-partitioning example, 
except: In SOS branching, the subsets of any Ji are created in a more rigid 
fashion that depends on a predefined ordering of the variables. (Escudero 
defines an S3 set to mean that all variables in the set are binary and are part 
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of a set-partitioning constraint. See the discussion on SOS in the next 
section.)  

Standard, variable-based branch and bound has difficulties with the SPP 
because it sets individual variables to 0 or to 1. Setting a variable xj, j ∈  Ji, 
to 0 can be a weak decision because all but one of the variables (there may 
be thousands) in constraint i will be 0 in the final solution anyway; there 
are typically many other variables in the constraint that can, collectively or 
individually, replace the fractional value $x j  and achieve nearly the same 

objective function value as when xj = 0. Setting xj to 1 is a very strong 
decision because it forces all other variables in Ji to 0. In fact, it forces 
xj′ = 0 for all j′ ∈ U ′ ∈ ′′ −i j J ii J j: � � , and often has a significant effect on the 

objective function value. An unbalanced enumeration tree results in such a 
problem because a “1-branch” eliminates a very large number of possible 
solutions from consideration further down the tree, while a “0-branch” 
eliminates only a few (Foster and Ryan 1981). 

Constraint branching described above moderates the strength of 
branching decisions. Branching from a node in the enumeration tree 
restricts all the variables in one subset to 0, and allows any combination of 
the variables in the other subset to sum to 1. As the branching progresses, 
the strong decision of setting a particular variable to 1 is deferred, while 
unpromising variables are culled from the unrestricted “sum-to-1” subset 
and placed in the new “set-to-0” subset. As a result, the enumeration tree is 
better balanced and often smaller than the standard tree (Foster and Ryan 
1981). 

Implicit-constraint branching is useful but it has one severe drawback: 
Special problem structure is required. It is natural to prefer implicit-
constraint branching to explicitly adding constraints of the form (2) because 
of the computational overhead involved. But, when structure is lacking, 
constraint branching with explicitly added constraints can reduce 
enumeration significantly, and the overhead can be modest, especially with 
today’s efficient LP solvers. We demonstrate explicit-constraint branching 
in the next section.  

2. EXPLICIT-CONSTRAINT BRANCHING  

“Explicit-constraint branching” (ECB) allows the benefits of constraint 
branching for MIPs lacking the special structure required of known 
implicit-constraint branching techniques. ECB using (2) is set up by 
(a) defining subsets Jk of the index set J of integer variables, (b) defining 
integer coefficients αkj for each k and each for j ∈  Jk, (c) defining general 
integer “branching variables” yk for each k, and (d) adding ECB constraints:  
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α kj j k

j J

x y k
k

− = ∀
∈
∑ 0 . (6) 

(Note: Additional information may imply tight bounds on the yk and such 
bounds should be included; in some instances, the yk may even be binary.) 
Constraint branching as in (2) is then performed by standard variable 
branching on the variables yk. Our implementations form ECB constraints 
before solving the MIP’s LP relaxation (“static ECB”), or after solving the 
LP relaxation, but before the start of branching (“semi-dynamic ECB”). We 
have not implemented a completely dynamic version of ECB that would 
add (and delete) constraints within the enumeration tree. The following 
example shows how ECB can exponentially reduce the enumeration 
required to solve a simple MIP. 

Consider the following MIP, a knapsack problem with 2n
n
�� 	
  alternate 

optimal solutions:  

P1� � max 3
1

2

x j

j

n

=
∑  (7) 

s.t. 2 2 1
1

2

x nj

j

n

=
∑ ≤ +  (8) 

x j nj ∈ =0 1 1 2, , , ,� � K .  (9) 

The LP relaxation of P1 has extreme point solutions with n variables equal 
to 1, one variable equal to 0.5, and n – 1 variables equal to 0. The objective 
value of the LP relaxation is 3n + 1.5, which can be rounded down to 3n + 
1 since the data are integer. Variable-based branch and bound forms a 
partition based on the one fractional variable, designated xf here, and 
branches using the restrictions “xf = 0 or xf = 1.” Each subsequent LP 
relaxation solved at a node of the enumeration tree has one of the remaining 
unfixed variables fractional, until n variables are fixed at 0 and an integer 
solution is obtained. This solution is optimal and is obtained quickly, but it 
takes much more work to prove that it is optimal: The upper bound from an 
LP relaxation (of a restriction) does not change from 3n + 1 to the tight 
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value of 3n until n variables are fixed to 0. Such a solution is integral 
anyway so, essentially, we cannot use the LP bound to trim the 

enumeration tree at all. Consequently, all 2n
n
�� 	
  alternate optimal solutions 

must be enumerated before the first solution is proven optimal. Of course, 
we can solve this problem trivially by tightening the right-hand side to 2n, 

or by adding a cut x nj
j

n
≤∑ =1

2
. But, excessive enumeration like this can 

arise in problems where tightening right-hand sides is cumbersome or has 
little effect, where useful cuts are difficult to find, and where the bound 
provided by the LP relaxation changes often (by small amounts), rather 
than rarely, as in the example. 

We employ ECB on P1 by adding a single ECB constraint  

x yj

j J∈
∑ − = 0 ,  (10) 

where y ≥ 0 and y is integer. The LP relaxation solves as before for $x , and 
the corresponding value for the branching variable y is $y  = n + 0.5. If we 
partition the IP’s feasible region based on y, rather than on a fractional xf — 
this is accomplished within a branch-and-bound solver by setting the 
“branching priority” higher for y than for the xj (e.g., Brooke et al. 1992, 
pp. 281-283) — we derive the restrictions “y ≤ n or y ≥ n + 1.” The second 
restriction is infeasible, and the first yields an LP relaxation with integer-
optimal extreme points. Thus, ECB with variable-based branch and bound 
enumerates at most three LPs to solve this problem. 

We note that the above example cannot be interpreted as an SOS 
technique: (a) Type 1 SOS requires that exactly one variable in a specified 
subset be positive (all others are 0) (Tomlin 1970), (b) Type 2 requires that 
exactly two variables in a subset are positive (all others are 0) and those 
two variables must be adjacent in some ordering of the subset (Tomlin 
1970), and (c) Type 3 is essentially the same as Type 1 except that all 
variables are binary and the variables are automatically identified as part of 
a set-partitioning constraint (Escudero 1988) or a constraint that is 
equivalent to a set-partitioning constraint through variable reflection (e.g., 
GAMS 1996). (These definitions vary in practice; for example, “exactly” 
may be replaced by “at most,” and “positive” may be replaced by “1.”) One 
special case of ECB and one variant of SOS are related, however, and we 
explore the similarities and differences in Section 3.3.  

It should also be noted that implicit-constraint branching for the SPP, as 
described in the previous section, is “complete” in the sense that every 
feasible solution can be enumerated by the partitioning scheme, and in 
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theory, the method must converge to an optimal solution. However, we 
typically intend to add only a modest number of ECB constraints to help 
solve a problem, and thus our version of ECB is usually “incomplete,” i.e., 
standard branching on the original integer variables of the problem is 
usually necessary for convergence. A dynamic version of ECB could be 
made complete, but this is beyond the scope of the current research. 

3. ILLUSTRATIVE EXAMPLES  

Here we demonstrate the application of ECB to three real-world MIPs 
and provide computational results. In each case, we exploit some 
knowledge of the model to formulate potentially useful ECB constructs. All 
three problems are also candidates for SOS branching, although only one 
instance is related to ECB. We delay discussion of SOS to Section 3.3.  

3.1 ECB for the Set-Partitioning Problem  

The requirement that Σj∈ Jxj be an integer quantity in any solution to the 
SPP is a less coercive requirement than is “each xj must be 0 or 1.” We can 
implement the former requirement, just as in P1, by defining a general 
integer variable y ≥ 0 and adding the single ECB constraint (10). By setting 
the branching priority higher for y than for any of the xj, the branch-and-

bound algorithm will ensure that y = Σj∈ Jxj is integer before branching on 
any individual xj. If y is or becomes integer, subsequent branching on an xj 
may cause y to become fractional at which point branching reverts to y.  

To create the ECB constraint above, we are taking advantage of this 
knowledge about SPPs: A priori, every variable looks pretty much the 
same. (This would also be the case for set-packing, set-covering and 
knapsack problems, for instance.) As will be seen, even a single constraint 
like (10) can substantially reduce computational effort. However, we can 
try to extend the basic technique further.  

The ECB constraint (10), along with branching priorities on integer 
variables, expresses: “The sum of all relaxed integer variables must be 
integer before requiring any individual variable to be integer.” When this 
statement is satisfied, it is natural to ask for a somewhat stronger 
requirement: “The sum of some subset of relaxed integer variables xj should 
be integer before requiring any variable in that subset to be integer.” We 
accomplish this through “nested ECB.”  
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Nested ECB separates the integer variables in one ECB constraint into 
disjoint subsets and creates a new ECB constraint for each subset. (It is not 
a requirement that the subsets be disjoint, but it is a logical and compelling 
step in our initial exploration of this technique.) For the SPP, we create a 
partition of J with subsets Jl ⊂  J, l ∈  L, and add ECB constraints  

x y l Lj l

j Jl

− = ∀ ∈
∈
∑ 0 .  

(Actually, any one of the nested constraints defined this way can be omitted 
because it is implied by the others and the initial constraint defined over all 
j ∈  J.) We set the branching priority high for y, intermediate for the yl, and 
low for the xj. Of course, nesting can be carried out recursively many times, 
but we have found in our test problems that one or two levels is the limit of 
its usefulness.  

The basic ECB constraint (10) for the SPP can certainly be added 
without solving the problem’s LP relaxation. In fact, that constraint can 
become a static part of the basic model and is thus a “static ECB 
constraint.” Static nested constraints can be created by defining the subsets 
Jl before solving any LP relaxation. Because these ECB constraints are 
static, however, little benefit may be gained from them if $y  and all $yl  are 

integer in the initial LP relaxation yet $x  is fractional: The branch-and-
bound algorithm will immediately branch on some xj and ECB can only 
make a contribution at some lower level in the enumeration tree. But, if we 
solve the LP relaxation for $x  and define the subsets Jl so that at least some 
of the $yl  are fractional, ECB must come into play immediately, even if $y  
is initially integer. We test this “semi-dynamic nested ECB” by splitting J 
into two subsets J1 and J2 using this procedure: (a) Evenly divide (roughly) 
the variables with $x j  = 0 between J1 and J2, (b) evenly divide (roughly) the 

variables with $x j  = 1 between J1 and J2, (c) evenly divide (roughly) the 

fractional variables $x j  between J1 and J2, and (d) if neither $x j
j J∈∑

1
 nor 

$x j
j J∈∑

2
 is fractional, move one fractional variable between J1 and J2 to 

ensure that both sums are fractional. 
ECB is implemented for the SPP using the CPLEX Callable Library 

(Version 3.0 1993). We use the “maximum-infeasibility” variable-selection 
rule for branching which is, empirically, the best option for our test 
problems among the four alternatives available. A relative optimality 
criterion of 0.1% is used (CPLEX 1993, p. 123). All computation is 
performed on an IBM RS/6000 Model 590 with 512 megabytes of RAM.  
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Our test problems are modest-sized SPPs from the meat-packing 
industry (Ronen 1997). The results are displayed in Table 1 and show that 
“Basic ECB” improves solution times significantly for the four largest 
problems. The value of semi-dynamic ECB is dubious but more 
experimentation is warranted: Perhaps different rules for defining the 
nested subsets would yield better results. Results with a static, nested ECB 
were uniformly worse than “Basic ECB” and are not listed.  

Table 1. Solving set-partitioning problems with ECB.  
BandB Basic ECB SD2 ECB Model 

Name Rows Cols Time Nodes Time Nodes Time Nodes 
PIB01 19 377 0.5 23 0.5 4 0.7 5 
PIB02 30 660 0.6 9 0.9 14 1.0 21 
PIBA0 38 2564 71.6 1757 7.6 43 8.0 37 
PIB03 49 3308 29.3 275 13.1 119 19.6 213 
PIB04 49 2196 4.8 67 4.4 27 4.6 20 
PIB05 50 2158 >1K >21K 7.9 109 18.2 253 
“Time” is in CPU seconds. “Nodes” are the number of nodes in the branch and bound 
enumeration tree. “BandB” uses standard branch and bound alone, while all other columns 
use a variant of ECB. “Basic ECB” adds a single branching constraint over all the variables. 
“SD2” adds one level of semi-dynamic nesting to basic ECB, by splitting J into two disjoint 
sets. Boldface values indicate the most efficient, minimum-time or minimum-node, 
solutions. “K” indicates thousands.  

3.2 ECB for the Elastic Generalized Assignment 
Problem 

The problem that instigated our search for better branching techniques is 
a version of the generalized assignment problem (GAP) (e.g., Amini and 
Racer 1994, Ross and Soland 1975) that we call the “elastic GAP” or 
“EGAP.” The GAP arises in a number of contexts but is described here as a 
minimum cost assignment of a collection of orders to delivery trucks. Each 
order must be delivered, and the number of orders any truck can deliver is 
constrained by the amount of time the truck has available to make 
deliveries. Deliveries are made from a single depot and each order o 
requires one out-and-back trip of known duration. All orders must be 
delivered and it is assumed that there is sufficient time available to make 
these deliveries in the basic GAP; otherwise the problem is infeasible. In 
the EGAP, penalized overtime on some or all trucks is allowed and this 
ensures that all deliveries can be met. The model is  
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EGAP
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0

, ,

,

� �  (12) 

where 
 
o∈ O is the set of orders to be delivered,  
t∈ T is the set of trucks that can make the deliveries,  
Ot is the set of orders that truck t is capable of delivering,  
To is the set of trucks with which order o can be delivered,  
cot is the cost (in dollars) of delivering order o with truck t,  
pot is the overtime penalty (in dollars per tenths of an hour) for truck 

t,  
hot denotes the hours (in tenths) required by truck t to deliver order 

o,  
Ht denotes the total regular-time hours (in tenths) available for 

deliveries on truck t,  
xot is 1 if order o is delivered by truck t, and is 0 otherwise, and  
zt are the hours (in tenths) of overtime on truck t.  

Constraints (11) ensure that each order is assigned to exactly one truck, and 
“resource constraints” (12) ensure that the hours available on the truck are 
not exceeded unless a linear overtime penalty is paid. The GAP is simply 
the EGAP with zt ≡ 0 for all t.  

Because constraints (11) do not overlap in the EGAP, the sum of all xot 
will be integer in any relaxation or restriction. Thus, an ECB constraint 
over all the variables, as in (10) for the SPP, would be of no value. 
However, the structure of the problem leads one to the following idea: The 

sum of (relaxed) orders on a truck, xot
o Ot∈∑ , should be integer before any 

individual variable xot, o ∈  Ot, is required to take on a binary value. This 
idea can be implemented as basic ECB by adding the following constraints 
to the EGAP:  
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x y t Tot t
o Ot

− = ∀ ∈
∈∑ 0 ,  (13) 

where each yt ≥ 0 is a general integer variable. This modified EGAP has 
| T | new constraints and | T | new integer variables. We hope that the extra 
burden placed on the LP solver by these constraints and variables is 
outweighed by a significant reduction in the number of LPs that must be 
solved. 

Actually, Jörnsten and Värbrand (1991) have applied a dynamic version 
of the ECB methodology just described to GAPs. In their branch-and-
bound procedure, they branch by explicitly adding constraints to the 
problem whenever the sum of orders on a truck is fractional. Our technique 
is essentially equivalent, but is obviously much simpler and needs no 
specialized code to implement.  

We first test ECB, implemented with constraints (13), on a set of eight 
EGAPs from the petroleum industry (Brown 1995). The EGAP is difficult 
and problems with as few as 200 variables cannot be solved with standard 
branch and bound in a reasonable amount of time. Table 2 lists problem 
statistics and computational results for these EGAPs (the number of trucks 
ranges from 6 to 35, and the number of orders from 21 to 151). The same 
hardware, software and software settings are used as for the SPP 
computational tests. Results labeled with “ECB” use | T | ECB constraints, 
one for each constraint of type (12). Results labeled with “KS” use elastic 
knapsack cuts (Appleget 1997) which extend standard knapsack cuts or 
“cover cuts” (Balas 1975, Balas and Zemel 1978). A set of at most 200 
such cuts is added to the problem before branch and bound begins. The 
column annotated solely with “KS” is included for comparison. The results 
in Table 2 demonstrate that significant computational improvements can be 
obtained with ECB and that there can be a synergistic effect between ECB 
and knapsack cuts.  

Table 2. EGAP solution results for eight real-world problems.  
BandB ECB ECB+KS KS Model 

Name Rows Cols Time Nodes Time Nodes Time Nodes Time Nodes 

LONGD 30 46 1.7 259 1.9 4 2.2 12 2.2 6 
LONGN 27 37 1.5 82 1.5 12 2.1 4 2.1 95 
BOSTD 73 330 >1K >170K 2.5 159 3.5 63 >1K >129K 
BOSTN 65 266 >1K >183K 1.8 57 3.0 50 >1K >132K 
DLWRD 89 469 >1K >113K >1K >137K 8.6 492 >1K >102K 
DLWRN 59 200 28.9 10441 1.8 89 3.1 65 8.0 1393 
LOSAD 185 1835 >1K >79K >1K >35K 199.0 3725 >1K >49K 
LOSAN 182 1790 >1K >73K >1K >36K 815.9 13627 >1K >34K 
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Boldface values denote minimum-time or minimum-node solutions. “ECB” indicates that 
ECB constraints (13) were used, and “KS” indicates that elastic knapsack cuts were used. 
ECB+KS is clearly the best overall technique.  

We have also obtained a set of 84 randomly generated GAPs from the 
literature (Osman 1995, Beasley and Chu 1995, Cattrysse et al. 1994), 
which have been compiled by Beasley (1997). These problems range in size 
from 20 constraints and 75 variables to 220 constraints and 4,000 variables. 
Using our terminology, the number of trucks in each problem ranges from 5 
to 20 and the number of orders ranges from 15 to 200; each order can be 
delivered by each truck. Table 3 summarizes the computational results for 
these problems. As with the EGAPs, ECB can improve solution times 
significantly for these GAPS, particularly when combined with knapsack 
cuts. 

Table 3. Summary of computational results for 84 randomly generated GAPs.  
 Small (< 1000 Variables) Large (≥ 1000 Variables) 

 BandB KS ECB ECB+KS BandB KS ECB ECB+KS 
Solved 40.6% 100% 100% 100% 30% 80% 90% 100% 
Time 88.2 4.3 6.9 2.9 352.5 113.0 26.5 70.1 
Nodes 33K 451 1022 33 49K 3731 1596 724 
“Solved” is the percentage of problems successfully solved in under 1,000 CPU seconds, 
“Time” is the average CPU seconds required to solve those problems that could be solved in 
under 1000 seconds, and “Nodes” is the average number of nodes in the branch-and-bound 
tree required by each successfully solved problem. As in Table 2, ECB+KS is the most 
efficient procedure. 

Since all the data in our version of the EGAP is integer, another ECB 
partitioning scheme quickly comes to mind: Ensure that the number of 
hours (in tenths) assigned to any truck is integer before requiring that the 
variables xot take on binary values. If we were dealing with a standard GAP 
with inelastic, inequality resource constraints (zt ≡ 0 in constraints (12)), 
simply adding a slack variable to each resource constraint and branching on 
these variables would implement ECB. (We might call this implicit-
constraint branching since we would add no constraints, just variables.) 
Because of the overtime variables zt, however, this will not work for the 
EGAP. Therefore, we implement ECB by defining integer ECB variables 

′yt  ≥ 0 and adding ECB constraints:  

h x y t Tot ot

o O

t

t∈
∑ − ′ = ∀ ∈0 ,  (14) 
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and by setting the branching priority higher for ′yt  than for the xot. Since 
hot > 1 is usual, this type of branching corresponds to using ECB constraints 
(6) with αkj > 1.  

This variant of ECB is a failure, by itself and in conjunction with ECB 
constraints (13). (We omit these computational results; most run times 
exceed 1000 seconds.) We conjecture that ECB fails in this instance 
because: If m < $ ′yt  < m + 1 for some LP relaxation to the EGAP and for 
some integer m, branching can occur via y′ t ≤ m or ′yt  ≥ m + 1. But, given 
the nature of constraints (12) and coefficients hot, there may be no solution 
to EGAP with ′yt  = m or ′yt  = m + 1. Thus, the algorithm wastes time 
investigating infeasible values for ′yt .  

There may be a way around the difficulty just described: Dynamic 
programming could be used first to determine the set of feasible values for 
each ′yt , say mt1  < mt2

 < … < mt L
, based on the elastic knapsack 

constraints (12). Then, when mtl  < $ ′yt  < mtl+1  the branching rule would be 
“ ′yt  ≤ mtl or ′yt  ≥ mtl+1 .” Valid values for the mtl  could even be determined 
dynamically within a branch-and-bound algorithm. We have not yet 
investigated these possibilities.  

3.3 A Plant-Line Scheduling Model  

GLS (Generic Line Scheduler) models plant-line scheduling in the food 
processing industry on a shift-by-shift basis, over a two-week horizon. The 
key model variable is Xptp′t′, which is 1 if “production pattern” p finishes 
production at time t and is immediately followed by pattern p′ in shifts t + 1 
through t′. A production pattern produces a single product on a processing 
line and packs that product into one or more stock-keeping units (skus) on 
one or more packing lines. The use of variables Xp′t′pt allows accurate 
modeling of product and packing changeovers.  

GLS includes standard production/inventory/demand constraints and 
uses flow-balance constraints to route one unit of “pattern flow” on each 
processing line over the shifts in the time horizon:  

− + = ∀ ∈ ∈ ∈′ ′
′ ′ ∈

′ ′
′ ′ ∈− +

∑ ∑X X l L t T p Pp t pt

p t PT

ptp t

p t PT

lt

pt pt, ,

, ,
1 6 1 6

0 ,  (15) 

where L is the set of processing lines, T is the set of shifts, Plt is the set of 

products that may be produced on line l during shift t, PTpt
−  is the set of 

patterns and ending shifts for those patterns that may directly precede 
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pattern p beginning on shift t, and PTpt
+  is analogous, but applies to 

immediately succeeding patterns and shifts. (Other constraints start each 
line off with one unit of flow, limit each pattern from appearing more than 
once during the week, ensure that each sku is packed, etc.)  

The model formulation is complicated, but the wisdom of the 
formulation is validated by tight LP relaxations, never worse than 10% of 
the optimal solution value in any test. However, the sheer number of binary 
variables in this model makes branch and bound difficult to use. We can 
reduce this number with ECB. 

Constraints (15) are flow-balance constraints for “nodes,” indexed by p 
and t, in a directed acyclic graph. If we fix the flow transiting each node to 
0 or 1, the LP relaxation of GLS will have an intrinsically integer solution, 
or it will be infeasible. This observation leads to the following model 
modifications:  

 
1. Add binary variables Ypt defined to be 1 if pattern p starts at time t, else 

0. 
2. Redefine variables Xp′t′pt to be non-negative and continuous. (Upper 

bounds are unnecessary.) 
3. Add the following set of constraints:  

X Y l L t T p Pptp t

p t PT

pt lt

pt

′ ′
′ ′ ∈ +
∑ − = ∀ ∈ ∈ ∈

,

, ,
1 6

0 .  (16) 

Now, instead of branching on 4,000–15,000 binary variables Xp′t′pt, we have 
a complete branching scheme that involves only 500 or so variables, Ypt. 
The price we pay is the addition of 500 or so constraints.  

At this point we must point out the relationship between ECB for this 
problem and SOS branching. The set of variables Xptp′t′ plus Ypt in each 
constraint (16) can be classified as a set of SOS-Type-1 (S1) variables and 
as a set of SOS-Type-3 (S3) variables if Ypt is reflected: Exactly one of the 
variables in the set must be 1. CPLEX, our chosen solver, uses a different 
definition of a set of S1 variables however: At most one variable in the set 
may be strictly between its bounds (GAMS 1996). On the other hand, 
CPLEX will automatically identify sets of S3 variables (to include 
reflections) via the constraints (16) and perform S1 branching on those sets, 
as described by Tomlin (1970). As we shall see, SOS branching has an 
erratic effect on run times for GLS.  

We note also that each set of variables xj for j ∈  Ji in the SPP is an S3 
set, as is each set of variables xot for t ∈  Ot in the EGAP. Experiments with 
our SPP problems show that SOS branching does not provide a significant 
advantage over basic branch and bound. Furthermore, all EGAP problems 
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that “time out” at 1000 seconds for basic branch and bound also time out 
with SOS branching with only one exception. We believe that the long run 
times with SOS arise because SOS relies on a rigid and meaningful 
ordering of the S3 variables (Beale and Tomlin 1970) and there is no such 
ordering in these problems or, at least, we have not found one.  

GLS can exploit another constraint-branching idea, too. Product 
changeovers are important and expensive, so we branch on ′Qw , defined to 
be the number of such changeovers during week w, using:  

X Q wp t pt w

p t PT f fp Pt T pt p pww

′ ′
′ ′ ∈ ≠∈∈

− ′ = ∈
−

′

∑∑∑
,

,
1 6

� �0 1 2   (17) 

where ′Qw  ≥ 0 and integer for w ∈  1, 2, Tw is the set of shifts in week w, Pw 
is the set of patterns that may be produced in week w, and fp is the product 
associated with pattern p. (Lower bounds on ′Qw  can sometimes be implied 
and exploited, but we do not use these bounds in the testing here.)  

Model statistics for a set of GLS models are displayed in Table 4, with 
various combinations of the ECB constructs (16) and (17). Corresponding 
computational results displayed in Table 5. Tests are carried out using the 
same hardware as in the previous examples, but GLS is generated using 
GAMS (1996) and solved with CPLEX using a 5% optimality tolerance 
and using the “pseudo-cost” variable-selection rule for branching. Results 
indicate that the simple, product-changeover ECB constraints (17) do help 
solve the GLS model but typically interfere with rapid solutions when 
combined with ECB constraints (16). The most consistent results are 
obtained using ECB constraints (16) alone. However, SOS branching does 
show promise.  

SOS branching is the best solution strategy for two of the five problems 
but is a horrible strategy for one of them. Our ordering of the S3 variables, 
which is based on time (see the caption of Table 5), works well in some 
cases. So, SOS may potentially improve run times for GLS, but more 
experimentation would be required to determine a consistently good 
ordering for the S3 variables, if one exists.  

Table 4. GLS Model Statistics.  
 Basic Model (a):  

No ECB 
Model (b): With 
Constraints (17) 

Model (c): With 
Constraints (16) 

Model (d): With 
Constraints (16)+(17) 

Name m n nint m n nint m n nint m n nint 

GLS1 567 4202 4157 569 4204 4159 1092 4727 527 1094 4729 529 
GLS2 595 4494 4439 597 4496 4441 1141 4985 548 1143 5042 550 
GLS3 639 5219 5162 641 5221 5164 1227 5750 590 1229 5809 592 
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 Basic Model (a):  

No ECB 

Model (b): With 

Constraints (17) 

Model (c): With 

Constraints (16) 

Model (d): With 

Constraints (16)+(17) 

Name m n nint m n nint m n nint m n nint 

GLS4 728 10231 10168 730 10233 10170 1400 10903 674 1402 10905 676 
GLS5 772 14709 14644 774 14711 14646 1486 16423 716 1488 15425 718 

All models pack 15-25 skus over two weeks. “m” in number of constraints, “n” is number of 
variables, and “nint” is number of integer variables. 

Table 5. GLS Computational Results.  
 Model (a) Model (b) Model (c) Model (d) Mod.(c)+SOS 
Name Sec. Nodes Sec. Nodes Sec. Nodes Sec. Nodes Sec. Nodes 
GLS1 27.8 125 7.9 11 6.7 13 18.6 18 17.9 53 
GLS2 288.7 1730 71.2 182 9.2 24 57.3 121 389.3 1774 
GLS3 131.4 715 120.7 231 20.4 57 46.3 63 11.0 19 
GLS4 98.1 134 69.5 54 55.0 75 91.6 87 16.7 13 
GLS5 6468.8 12694 1785.9 1888 791.0 598 3340.0 1504 > 9K > 11K 
Boldface values indicate the most efficient, minimum-time or minimum-node, solutions. All 
models are solved with a 5% relative optimality tolerance. “Mod.(c)+SOS” denotes Model 
(c) with each ECB constraint (16) used to identify a set of S3 variables on which S1 
branching is performed. Times for “Mod.(c)+SOS” reflect the best ordering of the S3 
variables found empirically: The variables Xptp′t′ are ordered by increasing t′  and are 
followed by Ypt. 

4. SUMMARY AND COMMENTS  

In summary, it appears that ECB holds much promise for reducing 
solution times for certain MIPs. Future work will explore the nested and 
dynamic versions of ECB more fully.  

We mention one issue that is not discussed in the body of this paper: 
ECB can sometimes interfere with the rapid identification of good 
incumbent solutions within a branch-and-bound procedure. Apparently, an 
ECB variable is branched on in the “wrong direction” in these cases, and 
much time is wasted exploring a large, unfruitful portion of the 
enumeration tree. On the other hand, ECB may still lead to the quick 
fathoming of nodes through strong changes in local lower bounds, if a good 
incumbent is known. We have found that this conflict can sometimes be 
resolved by finding a good incumbent using a model without ECB, and 
then returning to the model with ECB and with the initial incumbent.  
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